Olefin metathesis for chemical biology.
نویسندگان
چکیده
Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis.
منابع مشابه
Olefin metathesis for site-selective protein modification.
For a reaction to be generally useful for protein modification, it must be site-selective and efficient under conditions compatible with proteins: aqueous media, low to ambient temperature, and at or near neutral pH. To engineer a reaction that satisfies these conditions is not a simple task. Olefin metathesis is one of most useful reactions for carbon-carbon bond formation, but does it fit the...
متن کاملThe allylic chalcogen effect in olefin metathesis
Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowe...
متن کاملA general model for selectivity in olefin cross metathesis.
In recent years, olefin cross metathesis (CM) has emerged as a powerful and convenient synthetic technique in organic chemistry; however, as a general synthetic method, CM has been limited by the lack of predictability in product selectivity and stereoselectivity. Investigations into olefin cross metathesis with several classes of olefins, including substituted and functionalized styrenes, seco...
متن کاملChelated ruthenium catalysts for Z-selective olefin metathesis.
We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stere...
متن کاملPrevention of undesirable isomerization during olefin metathesis.
1,4-Benzoquinones have been found to prevent olefin isomerization of a number of allylic ethers and long-chain aliphatic alkenes during ruthenium-catalyzed olefin metathesis reactions. Electron-deficient benzoquinones are the most effective additives for the prevention of olefin migration. This mild, inexpensive, and effective method to block olefin isomerization increases the synthetic utility...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in chemical biology
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2008